
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 10: Refinements to Adversarial Search

2

Min Max Trees: From Last Time......

The Algorithm:

(1) Generate the tree (more on
this later!);

(2) Label the nodes by traversing
the tree post-order and:

(A) At leaf nodes, use the
eval() function;

(B) At Max nodes, back up
the maximum value of any child;
and

(C) At Min nodes, back up
the minimum value of any child.

(3) Choose the move that
corresponds to the largest child
of the root (which gave the root
its value).

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8

3

Min-Max Trees: From Last Time.....

Depth-bounded post-order traversal of a min-max tree down to
some fixed depth D:
Move chooseMove(Node t) {

int max = -Inf; Move best;
for(each move m to a child c of t) {

int val = minMax(c, 1);
if(val > max) {

best = m; max = val;
} }
return best;

}

int minMax(Node t, int depth) {
if(t is a leaf node || depth == D)
return eval(t);

else if(t is max node) {
int val = -Inf;
for(each child c of t)
val = max(val, minMax(c, depth+1);

return val;
} else { // is a min node

int val = Inf;
for(each child c of t)
val = min(val, minMax(c, depth+1);

return val;
} }

D

4

Min-Max Trees

What are my next two questions?

One: What’s wrong with this (if anything)?

Two: How can we make it more efficient?

How can we “prune” the search space so that we find
the best paths faster and eliminate useless nodes?

5

Refinements to Min-Max Search

Main Problem:

You have only a limited amount of
time to search, and the combinatorial
explosion of the search space makes
it imperative that you use your time
effectively to find the best move.

How can we find good nodes faster?

How can we avoid useless nodes?

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8

6

Refinements to Min-Max Search

How to Find Good Nodes Faster

Good Idea 1: Order the nodes: We
can apply best-first search to the Min-
Max tree:

Instead of searching children in some
random order, apply eval() to each
child, and search them in descending
order of value.

So: generate all children, sort
(descending order at Max nodes,
ascending order at Min nodes), then
search in order. You could cut off the
search after some number of children
(e.g., just search half, or use a
threshold value).

Note: Since we applying eval() to all
nodes, perhaps we want to create a
simpler, more efficient version for this
part of the search.

Max

Max

Min

Min -31 8 2 -6

-∞1 8 -6

-∞ 8 -6

8

7

Refinements to Min-Max Search

How can we avoid useless nodes?

Some of the nodes you examine
might be completely useless – they
will NEVER be on the intended path
which determines the choice of the
next move.

The intended path is easy to see: it is
the path the root’s value took from the
leaf (where it was create by eval()) to
the top of the tree.

Max

Max

Min

Min -31 8 2 -6

-∞1 8 -6

-∞ 8 -6

8

8

Refinements to Min-Max Search: Pruning the search
space

How can we avoid useless nodes?

Some of the nodes you examine might be
completely useless – they will NEVER be on
the intended path which determines the
choice of the best next move. Why?

a) Clearly bad for you (e.g., you sacrifice
your Queen to capture a Pawn!) or a
WIN for you

∞ WIN! -400
Ugh!

9

Refinements to Min-Max Search: Pruning the search
space

How can we avoid useless nodes?

Some of the nodes you examine might
be completely useless – they will
NEVER be on the intended path which
determines the choice of the best next
move.

a) Clearly bad for you (e.g., you
lose your Queen) or a WIN for
you.

Solution: Apply Eval() during
search and set thresholds at
which you stop searching below
that node.

Need separate thresholds for
Min and Max, or just reverse
them by multiplying by -1.

final int MAX_THRESHOLD = Infinity;
final int MIN_THRESHOLD = -300;

int minMax(Node t, int depth) {
int e = eval(t);
if(t is a leaf node (no moves)
|| depth == D)

return e;
else if(t is max node) {

if(e >= MAX_THRESHOLD
|| e <= MIN_THRESHOLD)
return e;

....
}
else if(t is min node) {

if(e <= -MAX_THRESHOLD
|| e >= -MIN_THRESHOLD)
return e;

....
}

10

How can we avoid useless nodes?

Some of the nodes you examine might be
completely useless – they will NEVER be on
the intended path which determines the
choice of the best next move.

a) Clearly bad for you (e.g., you lose your
Queen) or a WIN for you. Solution:
Use eval to filter out “useless nodes.”

b) Similarly, when a move is significantly
better than its siblings, don't bother
searching the siblings, since if you get
there, you'll clearly prefer this move.
This is called a "singular extension."

Refinements to Min-Max Search: Pruning the search space

10

11

How can we avoid useless nodes?

Some of the nodes you examine might be
completely useless – they will NEVER be on
the intended path which determines the
choice of the best next move.

a) Clearly bad for you (e.g., you lose your
Queen) or a WIN for you. Solution:
Use eval to filter out “useless nodes.”

b) Similarly, when a move is significantly
better than its siblings, don't bother
searching the siblings, since if you get
there, you'll clearly prefer this move.
This is called a "singular extension."

c) Some nodes are useless because we
have already found “good enough”
nodes in other parts of the tree. This is
called α-β-Pruning

Refinements to Min-Max Search: Pruning the search space

12

α-β-Pruning: Examples

We have seen that we can stop
searching below a node when we
have found a “good enough” node
such as a Win:

Why search these nodes?

∞

∞

Refinements to Min-Max Search: Pruning the search space

13

Refinements to Min-Max Search

α-β-Pruning: Examples

But then why search any of the
siblings? You’ve already found a “good
enough” node to pass to the parent!

The siblings are useless as well!

Why search any of these nodes?

So, if you find a Win when searching
the children left to right, stop searching
and return Infinity!

∞

∞

Refinements to Min-Max Search: Pruning the search space

14

Refinements to Min-Max Search

α-β-Pruning: Examples

But then why search any of the
siblings? You’ve already found a “good
enough” node to pass to the parent!

The siblings are useless as well!

A similar argument works at
Minimizing nodes: if you find a Losing
node, stop (that’s the one your
opponent will choose!)

-∞

-∞

Refinements to Min-Max Search: Pruning the search space

15

Refinements to Min-Max Search

α-β-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP! 240

Refinements to Min-Max Search: Pruning the search space

16

Refinements to Min-Max Search

α-β-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP! 240

The best value
found so far!

240

Refinements to Min-Max Search: Pruning the search space

17

Refinements to Min-Max Search

α-β-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP! 240

∞

The best value
found so far!

How could you find a better
value here??

∞

Refinements to Min-Max Search: Pruning the search space

18

Refinements to Min-Max Search

α-β-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP! 240

∞

∞

Refinements to Min-Max Search: Pruning the search space

19

Refinements to Min-Max Search

α-β-Pruning: Examples

But sometimes this kind of argument
works among different levels of the tree!

Suppose we start searching post-order
in this tree...

Max

Max

Min

Min -35

5

5

13

5

The best value
found so far!
Final value will
be ≥ 5.

The root “knows” he can
get at least a 5 from the
left-most child, but what if a
value > 5 can be found in
the rest of the children?
Keep searching!

? ?

Refinements to Min-Max Search: Pruning the search space

20

Refinements to Min-Max Search

α-β-Pruning: Examples

But sometimes this kind of argument
works among different levels of the
tree!

Max

Max

Min

Min -35 13

5

5

13 13

-5

13

13

The best value
found so far!
Final value will
be ≥ 13.

YES! Found a 13. Can a
value > 13 be found in the
remaining child? Keep
searching......

?

Refinements to Min-Max Search: Pruning the search space

21

Refinements to Min-Max Search

α-β-Pruning: Examples

But sometimes this kind of argument
works among different levels of the
tree!

Max

Max

Min

-35 13

5

5

13 13

-5

13

13

The best value
found so far!
Final value will be
≥ 13.

2

2

At the next level down, a 2
has been backed up to a
“grandparent”. This means
the right-most (minimizing)
child knows he can get ≤ 2.

2

Refinements to Min-Max Search: Pruning the search space

Final value will
be ≤ 2.

22

Refinements to Min-Max Search

α-β-Pruning: Examples

But sometimes this kind of argument
works among different levels of the
tree!

Max

Max

Min

-35 13

5

5

13 13

-5

13

13

The best value
found so far!
Final value will be
≥ 13.

2

2

At the next level down, a 2
has been backed up to a
“grandchild”. This means
the right most (minimizing)
child “knows” he can get 2
or less.

But then there is NO WAY
any value from the right-
most child can “beat” the
13. STOP!

2

Refinements to Min-Max Search: Pruning the search space

Final value will
be ≤ 2.

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles
Among adjacent levels, then, we
could generalize this as follows for
post-order traversal below a Max
node:

Keep track of the max value α among
the children of all Max nodes, and the
min value β among the children of all
Min nodes. These are the “best-so-
far” values.

Max

Min

α

If the best-so-far value of a
grandchild is less than a
Max nodes best-so-far
value, i.e.,

if(β < α) STOP!

α0 α1 αk-1.....

α= max(α0... αk-1)

Max

β

β1β0 βj.....

β=min(β0... βj)

?

Refinements to Min-Max Search: Pruning the search space

24

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

20

-3

30

5

5

18

Refinements to Min-Max Search: Pruning the search space

25

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

20

-3

30

5

5

18

Suppose the blue
values are best-so-far
found during post-order
traversal. We can
update the best-so-far
based on finding the 15
at a leaf node…..

Refinements to Min-Max Search: Pruning the search space

26

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

20

-3

30

5

5

18

15 < 20 ✔

Refinements to Min-Max Search: Pruning the search space

27

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

15

-3

30

5

5

18

15 < 20 ✔

Refinements to Min-Max Search: Pruning the search space

28

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

15

-3

30

5

5

18

15 < 20 ✔

15 > -3 ✔

Refinements to Min-Max Search: Pruning the search space

29

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

15

15

30

5

5

18

15 < 20 ✔

15 > -3 ✔

Refinements to Min-Max Search: Pruning the search space

30

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

15

15

15

5

5

18

15 < 20 ✔

15 > -3 ✔

15 < 30 ✔

Refinements to Min-Max Search: Pruning the search space

31

Refinements to Min-Max Search

α-β-Pruning: Basic
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15

15

15

15

15

15

15

15 < 20 ✔

15 > -3 ✔

15 < 30 ✔

15 > 5 ✔

15 < 18 ✔

15 > 5 ✔

Refinements to Min-Max Search: Pruning the search space

32

Refinements to Min-Max Search

α-β-Pruning: Basic Principles

So, here is the simpler way to look at it:

15 > every value at Max nodes

is same as

15 > max(all values at Max nodes)

and

15 < every value at Min nodes

is same as

15 < min(all values at Min nodes)

15

15

15

15

15

15

15

15 < 20 ✔

15 > -3 ✔

15 < 30 ✔

15 > 5 ✔

15 < 18 ✔

15 > 5✔

Refinements to Min-Max Search: Pruning the search space

33

Refinements to Min-Max Search

α-β-Pruning: Basic Principles
So, here is the simpler way to look at it:

Suppose

o N is a node we are visiting, with a value
calculated as VN;

o α0... αk is the set of values calculated at
Max nodes on the path from N to root;

o β0... βj is the set of values calculated at
Min nodes on the path from N to root;

VN

β2

α2

β1

α0

α1

β0

VN ≤ β2 ✔

VN ≥ α2 ✔

VN ≤ β1 ✔

VN ≥ α1 ✔

VN ≤ β0 ✔

VN ≥ α0 ✔

Refinements to Min-Max Search: Pruning the search space

34

Refinements to Min-Max Search

α-β-Pruning: Basic Principles
So, here the simpler way to look at it:

Suppose

o N is a node we are visiting, with a value
calculated as VN;

o α0... αk is the set of values calculated at
Max nodes on the path from N to root;

o β0... βj is the set of values calculated at
Min nodes on the path from N to root;

Then N is only useful if

max(α0... αk) ≤ VN ≤ min(β0... βj)

α3 ... α0... αk... α7 β2... β4 ... β0... Βj

best-so-far useful VN values best-so-far

at Max nodes at Min nodes
VN

β2

α2

β1

α0

α1

β0

VN ≤ β2 ✔

VN ≥ α2 ✔

VN ≤ β1 ✔

VN ≥ α1 ✔

VN ≤ β0 ✔

VN ≥ α0 ✔

Refinements to Min-Max Search: Pruning the search space

35

Refinements to Min-Max Search

α-β-Pruning: Basic Principles
So, here the simpler way to look at it:

Suppose

o N is a node we are visiting, with a value calculated as
VN;

o α0... αk is the set of values calculated at Max nodes
on the path from N to root;

o β0... βj is the set of values calculated at Min nodes on
the path from N to root;

Then N is only useful if

max(α0... αk) ≤ VN ≤ min(β0... βj)

Punchline: If max(α0... αk) > min(β0... βj) then VN can
NEVER be useful. STOP!

α3 ... α0... αk... α7

β4... β2 ... β0... Βj

No possible VN values!
VN

β2

α2

β1

α0

α1

β0

VN ≤ β2 ✔

VN ≥ α2 ✔

VN ≤ β1 ✔

VN ≥ α1 ✔

VN ≤ β0 ✔

VN ≥ α0 ✔

Refinements to Min-Max Search: Pruning the search space

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

Refinements to Min-Max Search: Pruning the search space

int final Inf = 1000000

Move chooseMove(Node t) {
int max = -Inf; Move best;
for(each move m to a child c of t) {

int val = minMax(c, 1, -Inf, Inf);
if(val > max) { best = m; max = val };

}
return best; }

int minMax(Node t, int depth, int alpha, int beta) {
if(t is a leaf node (no moves) || depth == D)

return eval(t); // stop searching and return eval
else if(t is max node) {

int val = -Inf;
for(each child c of t) {
alpha = max(alpha, val); // update alpha with max so far
if(beta < alpha) break; // terminate loop
val = max(val, minMax(c, depth+1, alpha, beta));

}
return val;

} else { // is a min node
int val = Inf;
for(each child c of t) {
beta = min(beta, val); // update beta with min so far
if(beta < alpha) break; // terminate loop
val = min(val, minMax(c, depth+1, alpha, beta));

}
return val;

} }

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

Max

Max

Min

(-Inf, Inf) (α, β)

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

(-Inf, Inf)

(-Inf, Inf)

(-Inf, Inf)

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

5

(-Inf, Inf)

(-Inf, Inf)

(5, Inf)

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, Inf)

(-Inf, Inf)

(5, Inf)

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, Inf)

(-Inf, Inf)

(5, Inf)

5

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes
above or at the current node;

o Keep track of the min value β
found so far at Min nodes
above or at the current node;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, 5)

(-Inf, Inf)

5

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, 5)

(-Inf, Inf)

5

5 13

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, 5)

(-Inf, Inf)

5

5 13

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, Inf)

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, Inf)

(5, Inf)

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, Inf)

(5, Inf)

-3

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, Inf)

(5, Inf)

-3

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, Inf)

(5, Inf)

-3 -10

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, Inf)

(5, Inf)

-3 -10

-3

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, -3)

-3 -10

-3

(5, Inf)

5

-3

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

(5, -3)

-3 -10

-3

(5, Inf)

5

-3

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5, Inf)

(10, Inf)

10

-3

5

10

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5, Inf)

(20, Inf)

10 20

-3

5

20

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5, 20)

10

20

20

-3 20

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5,20)

10

20

20

(5,20)

-3 20

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5,20)

10

20

20

(5,20)

-10

-3 20

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5, 20)

10

20

20

(5,20)

-10

-10

-3 20

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5, -10)

10

20

20 -10

-10

-3 -10

5

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

(5, -10)

10

20

20 -10

-10

-10-3

Refinements to Min-Max Search

α-β-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value α
found so far at Max nodes;

o Keep track of the min value β
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

10

20

20 -10

-10

-10-3

5

63

Improving the Min-Max Algorithm

How effective is Alpha-Beta Pruning?

Using a vanilla implementation of the my Connect4 program, I counted how
many total board positions were examined, with and without AB Pruning.
Here are the results, expressed as the percentage of boards examined under
AB Pruning compared with no pruning:

The improvement is ~(2/3)(depth – 2), which is an exponential improvement;
roughly, this means that using AB Pruning, you can go two layers deeper
than you could otherwise.

The conclusion is obvious: Use AB Pruning!!

64

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level – but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; D

65

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level – but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D;
chooses move based on
best outcome at depth D

D

Further Refinements to Game-Tree Search

66

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level – but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; chooses move
based on best outcome at depth D;

Min does the same, but looks one more level
down......

Further Refinements to Game-Tree Search

67

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level – but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; chooses move
based on best outcome at depth D;

Min does the same, but looks one more level
down......

Max does the same…..

Further Refinements to Game-Tree Search

68

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level – but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; chooses move
based on best outcome at depth D;

Min does the same, but looks one more level
down......

And so it goes..... So you can get caught by
the Horizon Effect: You might make a bad
move because you can’t see beyond the
horizon: traps which pay off after D+1 moves
are very effective!

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level – but if he/she/it searches to depth D,
that is your depth D+1.

The complication is that if you decide it is
NOT a good move, you have to find another
move, but that means storing the tree in some
fashion. Difficult.....

Solution: Once you
choose an intended
path, do a secondary
search below the path
to check for traps!

D

Further Refinements to Game-Tree Search

70

Quiescence

Problem: Maybe at level D, you are in the
middle of a huge battle, e.g., exchanging
pieces in Chess, and the values flip back and
forth in extremes…..

-350

400

510

-320

Further Refinements to Game-Tree Search

71

Quiescence

Problem: Maybe at level D, you are in the
middle of a huge battle, e.g., exchanging
pieces in Chess, and the values flip back and
forth in extremes…..

Your last value at level D might not be very
accurate, since if you search one more level,
it will change dramatically again!

But sometime such battles end up with a big
advantage for you (e.g., exchanging Rooks to
capture a Queen). So you want to explore it!

-350

400

510

-320

-450

Further Refinements to Game-Tree Search

72

Quiescence

Problem: Maybe at level D, you are in the
middle of a huge battle, e.g., exchanging
pieces in Chess, and the values flip back and
forth in extremes…..

Your last value at level D might not be very
accurate, since if you search one more level,
it will change dramatically again!

Solution: Do secondary search until the
variation in the last couple of moves has
settled down to a more reasonable value.

Punchline: Trust but verify—do a little
more checking to see that your intended
path is a good one.

-350

400

510

-320

-450

400

380
420

Further Refinements to Game-Tree Search

Use a database of known good moves.

This is particularly useful in the beginning and ending of games like chess,
since there are fewer moves and the branching factor is much less.

There are databases of all five- and all six-piece endgames in chess!

Further Refinements to Game-Tree Search

