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Min Max Trees: From Last Time......

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, back up 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8
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Min-Max Trees: From Last Time..... 

Depth-bounded post-order traversal of a min-max tree down to 
some fixed depth D:
Move chooseMove(Node t) {

int max = -Inf;     Move best; 
for(each move m to a child c of t) {

int val = minMax( c, 1 );
if(val > max) {

best = m; max = val;
}  }
return best;

}

int minMax(Node t, int depth) {
if( t is a leaf node || depth == D) 
return eval(t); 

else if( t is max node ) {
int val = -Inf;
for(each child c of t) 
val = max(val, minMax( c, depth+1 );

return val;
} else {                      // is a min node

int val = Inf;
for(each child c of t) 
val = min(val, minMax( c, depth+1 );

return val;
}  }

D
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Min-Max Trees

What are my next two questions?

One:    What’s wrong with this (if anything)?

Two:    How can we make it more efficient?

How can we “prune” the search space so that we find 
the best paths faster and eliminate useless nodes?
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Refinements to Min-Max Search

Main Problem:

You have only a limited amount of 
time to search, and the combinatorial 
explosion of the search space makes 
it imperative that you use your time 
effectively to find the best move. 

How can we find good nodes faster?

How can we avoid useless nodes?

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8
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Refinements to Min-Max Search

How to Find Good Nodes Faster

Good Idea 1:  Order the nodes: We 
can apply best-first search to the Min-
Max tree:

Instead of searching children in some 
random order, apply eval() to each 
child, and search them in descending 
order of value. 

So: generate all children, sort 
(descending order at Max nodes, 
ascending order at Min nodes), then 
search in order. You could cut off the 
search after some number of children 
(e.g., just search half, or use a 
threshold value). 

Note: Since we applying eval() to all 
nodes, perhaps we want to create a 
simpler, more efficient version for this 
part of the search. 

Max

Max

Min

Min -31 8 2 -6

-∞1 8 -6

-∞ 8 -6

8
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Refinements to Min-Max Search

How can we avoid useless nodes?

Some of the nodes you examine 
might be completely useless – they 
will NEVER be on the intended path 
which determines the choice of the 
next move.

The intended path is easy to see: it is 
the path the root’s value took from the 
leaf (where it was create by eval() ) to 
the top of the tree. 

Max

Max

Min

Min -31 8 2 -6

-∞1 8 -6

-∞ 8 -6

8
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Refinements to Min-Max Search: Pruning the search 
space

How can we avoid useless nodes?

Some of the nodes you examine might be 
completely useless – they will NEVER be on 
the intended path which determines the 
choice of the best next move. Why?

a) Clearly bad for you (e.g., you sacrifice 
your Queen to capture a Pawn!) or a 
WIN for you

∞ WIN! -400
Ugh!
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Refinements to Min-Max Search: Pruning the search 
space

How can we avoid useless nodes?

Some of the nodes you examine might 
be completely useless – they will 
NEVER be on the intended path which 
determines the choice of the best next 
move. 

a) Clearly bad for you (e.g., you 
lose your Queen) or a WIN for 
you.

Solution: Apply Eval() during 
search and set thresholds at 
which you stop searching below 
that node. 

Need separate thresholds for 
Min and Max, or just reverse 
them by multiplying by -1.  

final int MAX_THRESHOLD = Infinity;
final int MIN_THRESHOLD = -300;

int minMax(Node t, int depth) {
int e = eval(t); 
if( t is a leaf node (no moves) 
|| depth == D)

return e;  
else if( t is max node ) {

if(   e >= MAX_THRESHOLD
|| e <= MIN_THRESHOLD)
return e; 

.... 
}
else if( t is min node ) {          

if(   e <= -MAX_THRESHOLD                
|| e >= -MIN_THRESHOLD)
return e; 

.... 
}
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How can we avoid useless nodes?

Some of the nodes you examine might be 
completely useless – they will NEVER be on 
the intended path which determines the 
choice of the best next move. 

a) Clearly bad for you (e.g., you lose your 
Queen) or a WIN for you. Solution: 
Use eval to filter out “useless nodes.”

b) Similarly, when a move is significantly 
better than its siblings, don't bother 
searching the siblings, since if you get 
there, you'll clearly prefer this move. 
This is called a "singular extension."

Refinements to Min-Max Search: Pruning the search space

10
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How can we avoid useless nodes?

Some of the nodes you examine might be 
completely useless – they will NEVER be on 
the intended path which determines the 
choice of the best next move. 

a) Clearly bad for you (e.g., you lose your 
Queen) or a WIN for you. Solution: 
Use eval to filter out “useless nodes.”

b) Similarly, when a move is significantly 
better than its siblings, don't bother 
searching the siblings, since if you get 
there, you'll clearly prefer this move. 
This is called a "singular extension."

c) Some nodes are useless because we 
have already found “good enough” 
nodes in other parts of the tree. This is 
called α-β-Pruning

Refinements to Min-Max Search: Pruning the search space



12

α-β-Pruning:   Examples

We have seen that we can stop 
searching below a node when we 
have found a “good enough” node 
such as a Win: 

Why search these nodes? 

∞

∞

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

But then why search any of the 
siblings? You’ve already found a “good 
enough” node to pass to the parent!

The siblings are useless as well! 

Why search any of these nodes? 

So, if you find a Win when searching 
the children left to right, stop searching 
and return Infinity!

∞

∞

Refinements to Min-Max Search: Pruning the search space



14

Refinements to Min-Max Search

α-β-Pruning:   Examples

But then why search any of the 
siblings? You’ve already found a “good 
enough” node to pass to the parent!

The siblings are useless as well! 

A similar argument works at 
Minimizing nodes: if you find a Losing 
node, stop (that’s the one your 
opponent will choose!) 

-∞

-∞

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

The general idea is: If you can not 
possible improve on the best value 
you’ve found so far going post-order 
through the children, STOP! 240

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

The general idea is: If you can not 
possible improve on the best value 
you’ve found so far going post-order 
through the children, STOP! 240

The best value 
found so far!

240

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

The general idea is: If you can not 
possible improve on the best value 
you’ve found so far going post-order 
through the children, STOP! 240

∞

The best value 
found so far!

How could you find a better 
value here??

∞

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

The general idea is: If you can not 
possible improve on the best value 
you’ve found so far going post-order 
through the children, STOP! 240

∞

∞

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

But sometimes this kind of argument 
works among different levels of the tree!

Suppose we start searching post-order 
in this tree...

Max

Max

Min

Min -35

5

5

13

5

The best value 
found so far! 
Final value will 
be ≥ 5. 

The root “knows” he can 
get at least a 5 from the 
left-most child, but what if a 
value > 5 can be found in 
the rest of the children? 
Keep searching!

? ?

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

But sometimes this kind of argument 
works among different levels of the 
tree!

Max

Max

Min

Min -35 13

5

5

13 13

-5

13

13

The best value 
found so far!
Final value will 
be ≥ 13. 

YES!  Found a 13. Can a 
value > 13 be found in the 
remaining child? Keep 
searching......

?

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Examples

But sometimes this kind of argument 
works among different levels of the 
tree!

Max

Max

Min

-35 13

5

5

13 13

-5

13

13

The best value 
found so far!
Final value will be 
≥ 13. 

2

2

At the next level down, a 2 
has been backed up to a 
“grandparent”. This means 
the right-most (minimizing) 
child knows he can get ≤ 2. 

2

Refinements to Min-Max Search: Pruning the search space

Final value will 
be ≤ 2. 
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Refinements to Min-Max Search

α-β-Pruning:   Examples

But sometimes this kind of argument 
works among different levels of the 
tree!

Max

Max

Min

-35 13

5

5

13 13

-5

13

13

The best value 
found so far!
Final value will be 
≥ 13. 

2

2

At the next level down, a 2 
has been backed up to a 
“grandchild”. This means 
the right most (minimizing) 
child “knows” he can get 2 
or less. 

But then there is NO WAY 
any value from the right-
most child can “beat” the 
13.  STOP!

2

Refinements to Min-Max Search: Pruning the search space

Final value will 
be ≤ 2. 



Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles
Among adjacent levels, then, we 
could generalize this as follows for 
post-order traversal below a Max 
node:

Keep track of the max value α among 
the children of all Max nodes, and the 
min value β among the children of all 
Min nodes. These are the “best-so-
far” values. 

Max

Min

α

If the best-so-far value of a 
grandchild is less than a 
Max nodes best-so-far 
value, i.e., 

if( β < α ) STOP!

α0 α1 αk-1.....

α= max(α0... αk-1)

Max

β

β1β0 βj.....

β=min(β0... βj)

?

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

20

-3

30

5

5

18

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

20

-3

30

5

5

18

Suppose the blue 
values are best-so-far 
found during post-order 
traversal. We can 
update the best-so-far 
based on finding the 15 
at a leaf node….. 

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

20

-3

30

5

5

18

15 < 20  ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

15

-3

30

5

5

18

15 < 20  ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

15

-3

30

5

5

18

15 < 20  ✔

15 > -3  ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

15

15

30

5

5

18

15 < 20  ✔

15 > -3  ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval()) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

15

15

15

5

5

18

15 < 20  ✔

15 > -3  ✔

15 < 30  ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic 
Principles

Way Complicated, right?
Not really..... let’s look at it this way.....

If we could prove that a value K in a 
node can NEVER make its way from 
the leaf (where it got generated by 
Eval() ) to the root, then we don’t have 
to evaluate that node or any nodes 
below it. 

How does a value K survive the trip 
root-ward?

It has to be the largest child at Max 
nodes and the smallest child at Min 
nodes. 

15

15

15

15

15

15

15

15 < 20  ✔

15 > -3  ✔

15 < 30  ✔

15 > 5 ✔

15 < 18  ✔

15 > 5 ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic Principles

So, here is the simpler way to look at it:

15 > every value at Max nodes

is same as

15 > max( all values at Max nodes)

and

15 <  every value at Min nodes

is same as

15 < min( all values at Min nodes )

15

15

15

15

15

15

15

15 < 20  ✔

15 > -3  ✔

15 < 30  ✔

15 > 5 ✔

15 < 18  ✔

15 > 5✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic Principles
So, here is the simpler way to look at it:

Suppose 

o N is a node we are visiting, with a value 
calculated as VN; 

o α0... αk  is the set of values calculated at 
Max nodes on the path from N to root;

o β0... βj is the set of values calculated at 
Min nodes on the path from N to root;

VN

β2

α2

β1

α0

α1

β0

VN ≤ β2 ✔

VN ≥ α2 ✔

VN ≤ β1 ✔

VN ≥ α1 ✔

VN ≤ β0 ✔

VN ≥ α0 ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic Principles
So, here the simpler way to look at it:

Suppose 

o N is a node we are visiting, with a value 
calculated as VN; 

o α0... αk  is the set of values calculated at 
Max nodes on the path from N to root;

o β0... βj is the set of values calculated at 
Min nodes on the path from N to root;

Then N is only useful if 

max(α0... αk ) ≤ VN ≤ min(β0... βj)

α3  ... α0... αk... α7                                                                          β2... β4 ... β0... Βj

best-so-far                          useful VN values              best-so-far

at Max nodes                                                               at Min nodes
VN

β2

α2

β1

α0

α1

β0

VN ≤ β2 ✔

VN ≥ α2 ✔

VN ≤ β1 ✔

VN ≥ α1 ✔

VN ≤ β0 ✔

VN ≥ α0 ✔

Refinements to Min-Max Search: Pruning the search space
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Refinements to Min-Max Search

α-β-Pruning:   Basic Principles
So, here the simpler way to look at it:

Suppose 

o N is a node we are visiting, with a value calculated as 
VN; 

o α0... αk  is the set of values calculated at Max nodes 
on the path from N to root;

o β0... βj is the set of values calculated at Min nodes on 
the path from N to root;

Then N is only useful if 

max(α0... αk ) ≤ VN ≤ min(β0... βj)

Punchline:  If max(α0... αk ) > min(β0... βj) then VN can 
NEVER be useful. STOP!

α3  ... α0... αk... α7                                                                         

β4... β2 ... β0... Βj

No possible VN values!
VN

β2

α2

β1

α0

α1

β0

VN ≤ β2 ✔

VN ≥ α2 ✔

VN ≤ β1 ✔

VN ≥ α1 ✔

VN ≤ β0 ✔

VN ≥ α0 ✔

Refinements to Min-Max Search: Pruning the search space



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

Refinements to Min-Max Search: Pruning the search space

int final Inf = 1000000

Move chooseMove(Node t) {
int max = -Inf;     Move best; 
for(each move m to a child c of t) {

int val = minMax( c, 1, -Inf, Inf );
if(val > max) { best = m; max = val };

} 
return best;   }

int minMax(Node t, int depth, int alpha, int beta ) {
if(   t is a leaf node (no moves) || depth == D)

return eval(t);          // stop searching and return eval
else if( t is max node ) {

int val = -Inf;   
for(each child c of t) {
alpha = max(alpha, val);   // update alpha with max so far
if(beta < alpha) break;    // terminate loop
val = max(val, minMax( c, depth+1, alpha, beta ));

}
return val;

} else {                      // is a min node
int val = Inf;
for(each child c of t) {
beta = min(beta, val);   // update beta with min so far
if(beta < alpha) break;    // terminate loop
val = min(val, minMax( c, depth+1, alpha, beta ) );

}
return val;

} }



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

Max

Max

Min

(-Inf, Inf) ( α, β )



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

(-Inf, Inf)

(-Inf, Inf)

(-Inf, Inf)



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

5

(-Inf, Inf)

(-Inf, Inf)

(5, Inf)



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, Inf)

(-Inf, Inf)

(5, Inf)

5



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, Inf)

(-Inf, Inf)

(5, Inf)

5

5



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes 
above or at the current node;

o Keep track of the min value β 
found so far at Min nodes 
above or at the current node;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, 5)

(-Inf, Inf)

5

5



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, 5)

(-Inf, Inf)

5

5 13



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(-Inf, 5)

(-Inf, Inf)

5

5 13

5



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;

o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

5



Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles

How can we make this into an 
algorithm?

o Keep track of the max value α 
found so far at Max nodes;
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Refinements to Min-Max Search

α-β-Pruning:   
Basic Principles
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o Keep track of the min value β 
found so far at Min nodes;

o If ever β < α, STOP!

LET’S TRY IT…..

Refinements to Min-Max Search: Pruning the search space

5
5

Max

Max

Min

-3

(5, Inf)

5

5 13

5

-3 -10

-3

10

20

20 -10

-10

-10-3

5



63

Improving the Min-Max Algorithm

How effective is Alpha-Beta Pruning?

Using a vanilla implementation of the my Connect4 program, I counted how 
many total board positions were examined, with and without AB Pruning. 
Here are the results, expressed as the percentage of boards examined under 
AB Pruning compared with no pruning:

The improvement is ~(2/3)(depth – 2), which is an exponential improvement; 
roughly, this means that using AB Pruning, you can go two layers deeper 
than you could otherwise.  

The conclusion is obvious: Use AB Pruning!!
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Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the 
same algorithm, and searches to the same 
level – but if he/she/it searches to depth D, 
that is your depth D+1. 

Max searches to depth D; D
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Secondary Search

Assumption is that your opponent uses the 
same algorithm, and searches to the same 
level – but if he/she/it searches to depth D, 
that is your depth D+1. 

Max searches to depth D; 
chooses move based on 
best outcome at depth D

D

Further Refinements to Game-Tree Search
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Secondary Search

Assumption is that your opponent uses the 
same algorithm, and searches to the same 
level – but if he/she/it searches to depth D, 
that is your depth D+1. 

Max searches to depth D; chooses move 
based on best outcome at depth D;

Min does the same, but looks one more level 
down......

Further Refinements to Game-Tree Search
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Secondary Search

Assumption is that your opponent uses the 
same algorithm, and searches to the same 
level – but if he/she/it searches to depth D, 
that is your depth D+1. 

Max searches to depth D; chooses move 
based on best outcome at depth D;

Min does the same, but looks one more level 
down......

Max does the same…..

Further Refinements to Game-Tree Search
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Secondary Search

Assumption is that your opponent uses the 
same algorithm, and searches to the same 
level – but if he/she/it searches to depth D, 
that is your depth D+1. 

Max searches to depth D; chooses move 
based on best outcome at depth D;

Min does the same, but looks one more level 
down......

And so it goes.....   So you can get caught by 
the Horizon Effect: You might make a bad 
move because you can’t see beyond the 
horizon: traps which pay off after D+1 moves 
are very effective!

Further Refinements to Game-Tree Search



Secondary Search

Assumption is that your opponent uses the 
same algorithm, and searches to the same 
level – but if he/she/it searches to depth D, 
that is your depth D+1. 

The complication is that if you decide it is 
NOT a good move, you have to find another 
move, but that means storing the tree in some 
fashion. Difficult.....

Solution: Once you 
choose an intended 
path, do a secondary 
search below the path 
to check for traps! 

D

Further Refinements to Game-Tree Search
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Quiescence

Problem: Maybe at level D, you are in the 
middle of a huge battle, e.g., exchanging 
pieces in Chess, and the values flip back and 
forth in extremes…..

-350

400

510

-320

Further Refinements to Game-Tree Search
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Quiescence

Problem: Maybe at level D, you are in the 
middle of a huge battle, e.g., exchanging 
pieces in Chess, and the values flip back and 
forth in extremes…..

Your last value at level D might not be very 
accurate, since if you search one more level, 
it will change dramatically again!

But sometime such battles end up with a big 
advantage for you (e.g., exchanging Rooks to 
capture a Queen). So you want to explore it!
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Quiescence

Problem: Maybe at level D, you are in the 
middle of a huge battle, e.g., exchanging 
pieces in Chess, and the values flip back and 
forth in extremes…..

Your last value at level D might not be very 
accurate, since if you search one more level, 
it will change dramatically again!

Solution: Do secondary search until the 
variation in the last couple of moves has 
settled down to a more reasonable value. 

Punchline: Trust but verify—do a little 
more checking to see that your intended 
path is a good one. 
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Use a database of known good moves.

This is particularly useful in the beginning and ending of games like chess, 
since there are fewer moves and the branching factor is much less.  

There are databases of all five- and all six-piece endgames in chess!

Further Refinements to Game-Tree Search


