CS 4100: Introduction to Al

Wayne Snyder

Northeastern University

Lecture 10: Refinements to Adversarial Search

o HAAY YOUR QLEVER | [THAT'S YouR woe, Ricr?
dlv 'N ond HOb E s [LI STRAEN WS | | G WOH BT e U
&2 | oot R e S | [oDUTO OWGE iR oo, R
}.1 m £ .é WATH wmmf. wz 6 AT SO FASTL.

Min Max Trees: From Last Time......

The Algorithm:

(1) Generate the tree (more on
this later!);

Max 8

(2) Label the nodes by traversing
the tree post-order and:

(A) At leaf nodes, use the

eval() function; Min @ o a
(B) At Max nodes, back up

the maximum value of any child;
and

(C) At Min nodes, back up
the minimum value of any child. \ax | 1

- 00 8

(3) Choose the move that
corresponds to the largest child
of the root (which gave the root
its value).

2

Min-Max Trees: From Last Time.....

Depth-bounded post-order traversal of a min-max tree down to
some fixed depth D:

Move chooseMove (Node t) {
int max = -Inf; Move best;
for (each move m to a child ¢ of t) {
int val = minMax(c, 1);
if(val > max) {
best = m; max = val;

bod

return best;

}

int minMax (Node t, int depth) {
if(t is a leaf node || depth == D)
return eval (t) ;
else if(t 1is max node) {
int val = -Inf;
for (each child ¢ of t)
val = max(val, minMax(c, depth+l);
return val;
} else {
int val = Inf;
for (each child ¢ of t)
val = min(val, minMax(c, depth+1l);
return val;

b

// 1s a min node

Min-Max Trees

What are my next two questions?

One: What's wrong with this (if anything)?

Two: How can we make it more efficient?

How can we “prune” the search space so that we find
the best paths faster and eliminate useless nodes?

Refinements to Min-Max Search

Main Problem:

You have only a limited amount of
time to search, and the combinatorial
explosion of the search space makes
it imperative that you use your time

effectively to find the best move.
How can we find good nodes faster?
How can we avoid useless nodes?

1

b dus

Refinements to Min-Max Search

How to Find Good Nodes Faster

Good Idea 1: Order the nodes: We
can apply best-first search to the Min-
Max tree:

Instead of searching children in some
random order, apply eval() to each
child, and search them in descending
order of value.

So: generate all children, sort
(descending order at Max nodes,
ascending order at Min nodes), then
search in order. You could cut off the
search after some number of children
(e.g., just search half, or use a
threshold value).

Note: Since we applying eval() to all

nodes, perhaps we want to create a ,._

simpler, more efficient version for this
part of the search.

Max 8

(o) (8) (s

1

- 00 8 -6

Max

b dod

Refinements to Min-Max Search

How can we avoid useless nodes?

Some of the nodes you examine
might be completely useless — they
will NEVER be on the intended path
which determines the choice of the
next move.

The intended path is easy to see: it is
the path the root’s value took from the
leaf (where it was create by eval()) to
the top of the tree.

Min

Max

Max 8

(o) (8) (s

1

- 00 8 -6

b ok

Refinements to Min-Max Search: Pruning the search
space

How can we avoid useless nodes?

Some of the nodes you examine might be
completely useless — they will NEVER be on
the intended path which determines the
choice of the best next move. Why?

a) Clearly bad for you (e.g., you sacrifice
your Queen to capture a Pawn!) or a

WIN for you

Refinements to Min-Max Search: Pruning the search

space

How can we avoid useless nodes?

Some of the nodes you examine might
be completely useless — they will
NEVER be on the intended path which
determines the choice of the best next
move.

a) Clearly bad for you (e.g., you
lose your Queen) or a WIN for
you.

Solution: Apply Eval() during
search and set thresholds at
which you stop searching below
that node.

Need separate thresholds for
Min and Max, or just reverse
them by multiplying by -1.

final int MAX THRESHOLD = Infinity;
final int MIN THRESHOLD = -300;

int minMax (Node t,
int e = eval (t);
if(t 1is a leaf node

| | depth == D)
return e;
else 1f(t 1s max node) {
1f(e >= MAX THRESHOLD
|| e <= MIN_THRESHOLD)
return ey

int depth) {

(no moves)

}

else 1f(t i1s min node) {

1f (e <= -MAX THRESHOLD
|| e >= —MIN_THRESHOLD)
return e; §

Refinements to Min-Max Search: Pruning the search space

How can we avoid useless nodes?

Some of the nodes you examine might be
completely useless — they will NEVER be on
the intended path which determines the
choice of the best next move.

a) Clearly bad for you (e.g., you lose your
Queen) or a WIN for you. Solution:
Use eval to filter out “useless nodes.”

b) Similarly, when a move is significantly
better than its siblings, don't bother
searching the siblings, since if you get
there, you'll clearly prefer this move.
This is called a "singular extension."

10

Refinements to Min-Max Search: Pruning the search space

How can we avoid useless nodes?

Some of the nodes you examine might be
completely useless — they will NEVER be on
the intended path which determines the
choice of the best next move.

a) Clearly bad for you (e.g., you lose your
Queen) or a WIN for you. Solution:
Use eval to filter out “useless nodes.”

b) Similarly, when a move is significantly
better than its siblings, don't bother
searching the siblings, since if you get
there, you'll clearly prefer this move.
This is called a "singular extension."

c) Some nodes are useless because we
have already found “good enough”
nodes in other parts of the tree. This is

called O=-Pruning

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples

We have seen that we can stop
searching below a node when we
have found a “good enough” node
such as a Win:

Why search these nodes?

—

599

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples

But then why search any of the
siblings? You've already found a “good
enough” node to pass to the parent!

The siblings are useless as well!

Why search any of these nodes?

So, if you find a Win when searching
the children left to right, stop searching
and return Infinity!

13

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples

But then why search any of the
siblings? You've already found a “good
enough” node to pass to the parent!

The siblings are useless as well! @

A similar argument works at
Minimizing nodes: if you find a Losing
node, stop (that’s the one your - 00

opponent will choose!) ; ; \
14

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP!

15

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP!

240

The best value
found so far!

16

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples The best value
' - found so far!
o0
The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP! @ @

\ J
|

How could you find a better
value here?? 17

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples

The general idea is: If you can not
possible improve on the best value
you’ve found so far going post-order
through the children, STOP!

18

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples The best value
| B found so far!

Final value will
be = 5.

Max 5

But sometimes this kind of argument
works among different levels of the tree!

Min
Suppose we start searching post-order
in this tree...

The root “knows” he can S 13

Max
get at least a 5 from the
left-most child, but what if a
value > 5 can be found in
the rest of the children? Min
Keep searching!
19

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Examples The best value
| B found so far!

Final value will
be = 13.

Max 13

But sometimes this kind of argument
works among different levels of the
tree!

Min
YES! Found a 13. Can a
value > 13 be found in the
remaining child? Keep
searching......

5 13 13

PIaN

Refinements to Min-Max Search: Pruning the search space

a-B-Pruning: Examples ahe hestvaue
Final value Will be
Max 13 = 13.
But sometimes this kind of argument
works among different levels of the Final value will
tree! be < 2.

Min
At the next level down, a 2
has been backed up to a
“‘grandparent”. This means
the right-most (minimizing)
child knows he can get < 2.

S) 13 13 2

S d ok

21

Refinements to Min-Max Search: Pruning the search space

a-B-Pruning: Examples ahe hestvaue
Final value Will be
Max 13 = 13.
But sometimes this kind of argument
works among different levels of the Final value will
tree! be < 2.

Min
At the next level down, a 2
has been backed up to a
“grandchild”. This means
the right most (minimizing)

child “knows” he can get 2
or less. 5 13 13 g

Max
But then there is NO WAY
any value from the right-
most child can “beat” the
13. STOP!

22

Refinements to Min-Max Search: Pruning the search space

a-B-Pruning: Basic
Principles

Max

Among adjacent levels, then, we
could generalize this as follows for
post-order traversal below a Max
node:
Min
Keep track of the max value a among
the children of all Max nodes, and the
min value B among the children of all
Min nodes. These are the “best-so-

far” values.

If the best-so-far value of a
grandchild is less than a
Max nodes best-so-far
value, i.e.,

if(B <a)STOP!

a= maX(ao. o Okoq)

len(ﬁo BJ)

Max

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right?

Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-B-Pruning: Basic Suppose the blue
. . = values are best-so-far
Principles

found during post-order
traversal. We can
update the best-so-far
based on finding the 15
at a leaf node.....

Way Complicated, right”?
Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right?

Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right?

Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right?

Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right?

Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right?

Not really..... let’s look at it this way.....

If we could prove that a value K'in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic
Principles

Way Complicated, right”?
Not really..... let’s look at it this way.....

If we could prove that a value K in a
node can NEVER make its way from
the leaf (where it got generated by
Eval()) to the root, then we don’t have
to evaluate that node or any nodes
below it.

How does a value K survive the trip
root-ward?

It has to be the largest child at Max
nodes and the smallest child at Min
nodes.

15>5V

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic Principles

15> 5V

So, here is the simpler way to look at it:

15 > every value at Max nodes
IS same as

15 > max(all values at Max nodes)
and

15 < every value at Min nodes
IS same as

15 < min(all values at Min nodes)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic Principles

So, here is the simpler way to look at it:
Suppose

o N is a node we are visiting, with a value
calculated as V\;

o Op... Oy is the set of values calculated at
Max nodes on the path from N to root;

o Bo-.- Bj is the set of values calculated at
Min nodes on the path from N to root;

Vy 2 Qg v

(6) VnsBe V
Vy 2 a4 v

@ Vysg, V

Vy 2, v

33

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic Principles

Vy 2 ag v

So, here the simpler way to look at it:

Suppose

o N is a node we are visiting, with a value ORTH: v
calculated as V\;

o Op... Oy is the set of values calculated at Vera
Max nodes on the path from N to root; N

o Bo... Bj is the set of values calculated at (5) Vy<B v
Min nodes on the path from N to root; o

Then N is only useful if

max(dyo... 0k) < Vy < min(Bo... B;) Vnza, V

as ... dg... Ok... A7 Bz B4 Bo Bj @ VN < BZ \/

j
_Lest-so-far usefu, Vn values best-so-fLr

at Max nodes at Min nodes 34

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning: Basic Principles

So, here the simpler way to look at it:

Suppose

o N is a node we are visiting, with a value calculated as
Vi

o 0Op... Oy is the set of values calculated at Max nodes
on the path from N to root;

o Bo..- Bj is the set of values calculated at Min nodes on
the path from N to root;

Then N is only useful if
max(0p... dx) < Vy < min(Bo...)

Punchline: If max(ay... a,) > min(B,... §;) then V can
NEVER be useful. STOP!

ds ... dg... Ok... A7

64... BQ Bo Bj
)

No possible V| values!

Vy 2 Qg v

(6) VnsBe V
Vy 2 ay v
(5) VysB, V
Vy 2, \/
() WnSg, V

35

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:

Basic Principles

How can we make this into an
algorithm?

(@)

int final Inf = 1000000

Move chooseMove (Node t) {

int max = -Inf;

if (val > max)

}

return best; }

Move best;
for (each move m to a child ¢ of t) {
int val = minMax(¢, 1, -Inf, Inf);

{ best =

m; max = val };

Keep track of the max value a ; minMax (Node t, int depth, int alpha, int beta) {

found so far at Max nodes;

Keep track of the min value 3
found so far at Min nodes;

If ever B < a, STOP!

1f(t is a leaf node

return eval(t);

else if(t 1is max node) {

int val = -Inf;

for (each child ¢ of t) {
alpha = max(alpha, wval)
if (beta < alpha) break;

val = max(val,
}
return val;
} else {
int val = Inf;

minMax (

for (each child ¢ of t) {
beta = min (beta, wval);
if (beta < alpha) break;

val = min (val,

}

return val;

minMax (

(no moves) || depth == D)

// stop searching and return eval

; // update alpha with max so far
// terminate loop
c, depth+l, alpha, beta));

// 1s a min node

// update beta with min so far
// terminate loop
c, depth+l, alpha, beta));

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

(-Inf, Inf) (aB)

Max

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes; Min

S5 dEEE

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, Inf)

Min

(-Inf, Inf)

T8 dEEE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, Inf)

Min

(5, Inf)

5 dobEnL

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, Inf)

Min

(5, Inf)

Y doEnE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, Inf)

Min

(5, Inf)

o dobonE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes
above or at the current node;

o Keep track of the min value 3
found so far at Min nodes
above or at the current node;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, 5)

Min

o dobonE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, 5)

Min

13

o dobonE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(-Inf, Inf)

Max

(-Inf, 5)

Min

13

$o dobont

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

Min

o

(5, Inf)

Max 5

13

b &boOE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

Min

o

(5, Inf)

Max 5

(5, Inf)

13

b &boOE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(5, Inf)

Max 5

(5, Inf)
Min

(5, Inf)

13

$o dobont

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(5, Inf)

Max 5

(5, Inf)
Min

(5, Inf)

13

o dobont

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(5, Inf)

Max 5

(5, Inf)
Min

(5, Inf)

13

o dobont

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

(5, Inf)

Max 5

(5, Inf)
Min

(5, Inf)

13

o dbbont

Refinements to Min-Max Search: Pruning the search space

a-B-Pruning:
. . . (5, Inf)
Basic Principles
Max 5
How can we make this into an
algorithm?
(5, Inf)

o Keep track of the max value a
found so far at Max nodes; Min

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

(5, Inf) —

13 -3

6 dbbont

LET'S TRY IT.....

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

o

(5, Inf)

Max 5

13

-3

b &boOE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

LET'S TRY IT.....

o

(5, Inf)

Max 5

13

-3

b &LonE

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

(5, Inf)

Max 5

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes; Min

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

13 -3 10

o d ol

LET'S TRY IT.....

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

(5, Inf)

Max 5

How can we make this into an
algorithm?

o Keep track of the max value a
found so far at Max nodes; Min

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

13 -3 20

6 d bl

LET'S TRY IT.....

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?
2
o Keep track of the max value a (5 0
found so far at Max nodes;
o Keep track of the min value 3 L
found so far at Min nodes;
o IfeverB <a, STOP! -

(5, Inf)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?
2
o Keep track of the max value a (5 0
found so far at Max nodes;
o Keep track of the min value 3 L
found so far at Min nodes;
o Ifeverp <a, STOP! (5,24

(5, Inf)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?
2
o Keep track of the max value a (5 0
found so far at Max nodes;
o Keep track of the min value 3 L
found so far at Min nodes;
o Ifeverp <a, STOP! (5,24

(5, Inf)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?
2
o Keep track of the max value a (5 0
found so far at Max nodes;
o Keep track of the min value 3 L
found so far at Min nodes;
o Ifeverp <a, STOP! (5,24

(5, Inf)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?
(5 -10)
o Keep track of the max value a
found so far at Max nodes;
o Keep track of the min value 3 L
found so far at Min nodes;
o IfeverB <a, STOP! -

(5, Inf)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an
algorithm?
(5, -10)

o Keep track of the max value a

found so far at Max nodes;
o Keep track of the min value 3

found so far at Min nodes;
o Ifeverf <a, STOP!

(5, Inf)

Refinements to Min-Max Search: Pruning the search space

a-3-Pruning:
Basic Principles

How can we make this into an

algorithm?

o Keep track of the max value a
found so far at Max nodes;

o Keep track of the min value 3
found so far at Min nodes;

o Ifeverf <a, STOP!

(5, Inf)

Improving the Min-Max Algorithm

How effective is Alpha-Beta Pruning?

Using a vanilla implementation of the my Connect4 program, | counted how
many total board positions were examined, with and without AB Pruning.
Here are the results, expressed as the percentage of boards examined under
AB Pruning compared with no pruning:

Depth Without AB With AB With/Without 0.67'¢et2

1 8 8 100.00%

2 72 72 100.00%
' 3 584 386 66.10% 0.6700

4 4,209 2,364 56.16% 0.4489
; 5 33,380 12,197 36.54% 0.3008
'. 6 255,247 48,912 19.16% 0.2015
l 7 2,322,941 312,565 13.46% 0.1350

The improvement is ~(2/3)erth—2) which is an exponential improvement;
roughly, this means that using AB Pruning, you can go two layers deeper
than you could otherwise.

The conclusion is obvious: Use AB Pruning!! o

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level — but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D;

64

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level — but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D;
chooses move based on
best outcome at depth D

!

\/

B
\ 4/

65

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level — but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; chooses move
based on best outcome at depth D;

Min does the same, but looks one more level

!

66

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level — but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; chooses move
based on best outcome at depth D; v

Min does the same, but looks one more level v

67

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level — but if he/she/it searches to depth D,
that is your depth D+1.

Max searches to depth D; chooses move
based on best outcome at depth D;

Min does the same, but looks one more level

And so it goes..... So you can get caught by
the Horizon Effect: You might make a bad
move because you can’t see beyond the
horizon: traps which pay off after D+1 moves
are very effective!

68

Further Refinements to Game-Tree Search

Secondary Search

Assumption is that your opponent uses the
same algorithm, and searches to the same
level — but if he/she/it searches to depth D,
§ W

that is your depth D+1.

Solution: Once you
choose an intended

path, do a secondary D
search below the path \/
to check for traps!

The complication is that if you decide it is _\

NOT a good move, you have to find another
move, but that means storing the tree in some
fashion. Difficult.....

Further Refinements to Game-Tree Search

Quiescence

Problem: Maybe at level D, you are in the
middle of a huge battle, e.g., exchanging

pieces in Chess, and the values flip back and
forth in extremes.....

{
/z
14‘7250

510

70

Further Refinements to Game-Tree Search

Quiescence

Problem: Maybe at level D, you are in the
middle of a huge battle, e.g., exchanging
pieces in Chess, and the values flip back and
forth in extremes.....

Your last value at level D might not be very
accurate, since if you search one more level,
it will change dramatically again!

But sometime such battles end up with a big
advantage for you (e.g., exchanging Rooks to
capture a Queen). So you want to explore it!

-320
400
-350
{51 0
-450

71

Further Refinements to Game-Tree Search

Quiescence

Problem: Maybe at level D, you are in the
middle of a huge battle, e.g., exchanging
pieces in Chess, and the values flip back and
forth in extremes.....

Your last value at level D might not be very
accurate, since if you search one more level,
it will change dramatically again!

-350

Solution: Do secondary search until the
variation in the last couple of moves has
settled down to a more reasonable value.

Punchline: Trust but verify—do a little

more checking to see that your intended
path is a good one.

Further Refinements to Game-Tree Search

Use a database of known good moves.

T.his is particularly useful in the beginning and ending of games like chess
since there are fewer moves and the branching factor is much less. |

There are databases of all five- and all six-piece endgames in chess!

400 positions after

by each side ; ‘
one mowe Databases for all

6
Opening stage: 5 and some
Dp:hbnu for plece endgames

The MONSTER

20 positions after
White's first move

Initial
position

opening moves
usually cover the
first 5-15 moves

Endgame
AA AN

stage w
| M A\A A AL

aaaaa

] ‘-ﬂ-=ﬂ_-D/

Middlegame stage: e
Moves In the middiegame DA TERORK
are selected by carrying out o) P [
a large search guided by A PRl

the minimax algorithm LG Wl

-
AAAAA

The search tree fans out at
an average of 30-40 moves

at each position In the tree

White wins in 255 moves
(Stiller, 1991)

